369 research outputs found

    On the role of exchange of power and information signals in control and stability of the human-robot interaction

    Get PDF
    A human's ability to perform physical tasks is limited, not only by his intelligence, but by his physical strength. If, in an appropriate environment, a machine's mechanical power is closely integrated with a human arm's mechanical power under the control of the human intellect, the resulting system will be superior to a loosely integrated combination of a human and a fully automated robot. Therefore, we must develop a fundamental solution to the problem of 'extending' human mechanical power. The work presented here defines 'extenders' as a class of robot manipulators worn by humans to increase human mechanical strength, while the wearer's intellect remains the central control system for manipulating the extender. The human, in physical contact with the extender, exchanges power and information signals with the extender. The aim is to determine the fundamental building blocks of an intelligent controller, a controller which allows interaction between humans and a broad class of computer-controlled machines via simultaneous exchange of both power and information signals. The prevalent trend in automation has been to physically separate the human from the machine so the human must always send information signals via an intermediary device (e.g., joystick, pushbutton, light switch). Extenders, however are perfect examples of self-powered machines that are built and controlled for the optimal exchange of power and information signals with humans. The human wearing the extender is in physical contact with the machine, so power transfer is unavoidable and information signals from the human help to control the machine. Commands are transferred to the extender via the contact forces and the EMG signals between the wearer and the extender. The extender augments human motor ability without accepting any explicit commands: it accepts the EMG signals and the contact force between the person's arm and the extender, and the extender 'translates' them into a desired position. In this unique configuration, mechanical power transfer between the human and the extender occurs because the human is pushing against the extender. The extender transfers to the human's hand, in feedback fashion, a scaled-down version of the actual external load which the extender is manipulating. This natural feedback force on the human's hand allows him to 'feel' a modified version of the external forces on the extender. The information signals from the human (e.g., EMG signals) to the computer reflect human cognitive ability, and the power transfer between the human and the machine (e.g., physical interaction) reflects human physical ability. Thus the information transfer to the machine augments cognitive ability, and the power transfer augments motor ability. These two actions are coupled through the human cognitive/motor dynamic behavior. The goal is to derive the control rules for a class of computer-controlled machines that augment human physical and cognitive abilities in certain manipulative tasks

    Human machine interaction via the transfer of power and information signals

    Get PDF
    Robot manipulators are designed to perform tasks which would otherwise be executed by a human operator. No manipulator can even approach the speed and accuracy with which humans execute these tasks. But manipulators have the capability to exceed human ability in one particular area: strength. Through any reasonable observation and experience, the human's ability to perform a variety of physical tasks is limited not by his intelligence, but by his physical strength. If, in the appropriate environment, we can more closely integrate the mechanical power of a machine with intellectually driven human hand under the supervisory control of the human's intellect, we will then have a system which is superior to a loosely-integrated combination of a human and his fully automated robot as in the present day robotic systems. We must therefore develop a fundamental approach to the problem of this extending human mechanical power in certain environments. Extenders will be a class of robots worn by humans to increase human mechanical ability, while the wearer's intellect remains the central intelligent control system for manipulating the extender. The human body, in physical contact with the extender, exchanges information signals and power with the extender. Commands are transferred to the extender via the contact forces between the wearer and the extender as opposed to use of joystick (master arm), push-button or key-board to execute such commands that were used in previous man amplifiers. Instead, the operator becomes an integral part of the extender while executing the task. In this unique configuration the mechanical power transfer between the human and extender occurs in addition to information signal transfer. When the wearer uses the extender to touch and manipulate an object, the extender transfers to the wearer's hand, in feedback fashion, a scaled-down value of the actual external load which the extender is manipulating. This natural feedback force on the wearer's hand allows him to feel the scaled-down value of the external forces in the manipulations. Extenders can be utilized to maneuver very heavy loads in factories, shipyards, airports, and construction sites. In some instances, for example, extenders can replace forklifts. The experimental results for a prototype extender are discussed

    On the Robot Compliant Motion Control

    Full text link

    Reference absolute and indexed values for left and right ventricular volume, function and mass from cardiac computed tomography

    Full text link
    Introduction Left ventricular ( LV ) and right ventricular ( RV ) volumetric and functional parameters are important biomarkers for morbidity and mortality in patients with heart failure. Purpose To retrospectively determine reference mean values of LV and RV volume, function and mass normalised by age, gender and body surface area ( BSA ) from retrospectively electrocardiographically gated 64‐slice cardiac computed tomography ( CCT ) by using automated analysis software in healthy adults. Materials and Methods The study was approved by the institutional review board with a waiver of informed consent. Seventy‐four healthy subjects (49% female, mean age 49.6 ± 11) free of hypertension and hypercholesterolaemia with a normal CCT formed the study population. Analyses of LV and RV volume (end‐diastolic, end‐systolic and stroke volumes), function (ejection fraction), LV mass and inter‐rater reproducibility were performed with commercially available analysis software capable of automated contour detection. General linear model analysis was performed to assess statistical significance by age group after adjustment for gender and BSA . Bland–Altman analysis assessed the inter‐rater agreement. Results The reference range for LV and RV volume, function, and LV mass was normalised to age, gender and BSA . Statistically significant differences were noted between genders in both LV mass and RV volume ( P ‐value < 0.0001). Age, in concert with gender, was associated with significant differences in RV end‐diastolic volume and LV ejection fraction ( P ‐values 0.027 and 0.03). Bland–Altman analysis showed acceptable limits of agreement (±1.5% for ejection fraction) without systematic error. Conclusion LV and RV volume, function and mass normalised to age, gender and BSA can be reported from CCT datasets, providing additional information important for patient management.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109344/1/jmiro12186.pd

    Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque.</p> <p>Methods</p> <p>Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time.</p> <p>Results</p> <p>During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis.</p> <p>Conclusion</p> <p>These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.</p

    IMECE2004-60060 DESIGN OF A SPATIAL LINKAGE HAPTIC INTERFACE

    Get PDF
    ABSTRACT This paper describes the mechanical and electrical design of a compact high fidelity desktop haptic interface that provides three-degree-of-freedom point-force interaction through a handheld pen-like stylus. The complete haptic device combines a spatial linkage, actuation, power amplification, and control electronics in a standalone package with a footprint similar to that of a notebook computer (33cm x 25cm x 10cm). The procedure used to design the statically balanced spatial linkage is explained and both an inexpensive lightweight plastic version and a high stiffness, high strength, aluminum and stainless steel version are presented. The theory and implementation of sinusoidal encoder interpolation and sinusoidal servo-motor commutation used to achieve high-fidelity haptic simulation is covered for two versions of electronic control hardware: custom hardware based on a digital signal processor (DSP) and an off-the-shelf design based on an embedded PC

    Diffusion MRI for assessment of bone quality; A review of findings in healthy aging and osteoporosis

    Get PDF
    Diffusion MRI (dMRI) is a growing imaging technique with the potential to provide biomarkers of tissue variation, such as cellular density, tissue anisotropy, and microvascular perfusion. However, the role of dMRI in characterizing different aspects of bone quality, especially in aging and osteoporosis, has not yet been fully established, particularly in clinical applications. The reason lies in the complications accompanied with implementation of dMRI in assessment of human bone structure, in terms of acquisition and quantification. Bone is a composite tissue comprising different elements, each contributing to the overall quality and functional competence of bone. As diffusion is a critical biophysical process in biological tissues, early changes of tissue microstructure and function can affect diffusive properties of the tissue. While there are multiple MRI methods to detect variations of individual properties of bone quality due to aging and osteoporosis, dMRI has potential to serve as a superior method for characterizing different aspects of bone quality within the same framework but with higher sensitivity to early alterations. This is mainly because several properties of the tissue including directionality and anisotropy of trabecular bone and cell density can be collected using only dMRI. In this review article, we first describe components of human bone that can be potentially detected by their diffusivity properties and contribute to variations in bone quality during aging and osteoporosis. Then we discuss considerations and challenges of dMRI in bone imaging, current status, and suggestions for development of dMRI in research studies and clinics to segregate different contributing components of bone quality in an integrated acquisition

    The VOrtex Ring Transit EXperiment (VORTEX) GAS project

    Get PDF
    Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project

    Idiopathic pulmonary fibrosis: Prognostic value of changes in physiology and six minute hallwalk.

    Full text link
    Rationale and Hypothesis: Idiopathic pulmonary fibrosis is a fatal disease with a variable rate of progression. We hypothesized that changes in distance walked and quantity of desaturation during a six-minute-walk test (6MWT) would add prognostic information to changes in FVC or diffusing capacity for carbon monoxide. Methods: One hundred ninety-seven patients with idiopathic pulmonary fibrosis were evaluated. Desaturation during the 6MWT was associated with increased mortality even if a threshold of 88% was not reached. Baseline walk distance predicted subsequent walk distance but was not a reliable predictor of subsequent mortality in multivariate survival models. The predictive ability of serial changes in physiology varied when patients were stratified by the presence/absence of desaturation 88% during a baseline 6MWT. For patients with a baseline saturation 88% during a 6MWT, the strongest observed predictor of mortality was serial change in diffusing capacity for carbon monoxide. For patients with saturation 88% during their baseline walk test, serial decreases in FVC and increases in desaturation area significantly predicted subsequent mortality, whereas decreases in walk distance and in diffusing capacity for carbon monoxide displayed less consistent statistical evidence of increasing mortality in our patients. Conclusion: These data highlight the importance of stratifying patients by degree of desaturation during a 6MWT before attributing prognostic value to serial changes in other physiologic variables.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91940/1/2006 AJRCCM Idiopathic pulmonary fibrosis - Prognostic value of changes in physiology and six minute hallwalk.pd
    corecore